Annual Drinking Water Quality Report for 2020 Keene Water District # 1 P.O. Box 89 Keene NY (Public Water Supply ID NY1500281) #### Introduction To comply with State regulations, the Town of Keene, will be annually issuing a report describing the quality of your drinking water. The purpose of this report is to raise your understanding of drinking water and awareness of the need to protect our drinking water sources. This report provides an overview of last year's water quality. Included are details about where your water comes from, what it contains, and how it compares to State standards. If you have any questions about this report or concerning your drinking water, please contact Joe Pete Wilson, Town Supervisor, at (518) 576-4444. We want you to be informed about your drinking water. If you want to learn more, please attend any of our regularly scheduled town board meetings. The meetings are held the second Tuesday of each month, 7:30 PM at the Town Hall. ### Where does our water come from? In general, the sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material and can pick up substances resulting from the presence of animals or from human activities. Contaminants that may be present in source water include microbial contaminants, inorganic contaminants, pesticides and herbicides, organic chemical contaminants, and radioactive contaminants. In order to ensure that tap water is safe to drink, the State and the EPA prescribe regulations, which limit the amount of certain contaminants in water provided by public water systems. The State Health Department's and the FDA's regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Our water system serves approximately 300 people through 100 service connections. Our water source is two 8" drilled wells, the water is disinfected with chlorine solution at the water treatment plant and is pumped into the distribution system and the new 330,000-gallon storage tank. The NYS Dept. of Health has completed a source water assessment for this system based on available information. The source water assessment has rated these sources as having an elevated susceptibility. No significant sources of contamination were identified. The wells draw water from an unconfined aquifer and overlying soils are not known to provide adequate protection from potential contamination. Please note that our water supply is disinfected to ensure that the finished water delivered to your home meets the New York State's drinking water standards for microbiological contamination. ## Are there contaminants in our drinking water? As the State regulations require, we routinely test your drinking water for numerous contaminants. These contaminants include total coliform, inorganic compounds, nitrate, nitrite, lead and copper, volatile organic compounds, total trihalomethanes, haloacetic acids, radiological and synthetic organic compounds. The table presented below depicts which compounds were detected in your drinking water. The State allows us to test for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. It should be noted that all drinking water, including bottled drinking water, might be reasonably expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (800-426-4791) or the Health Department at (518) 891-1800. | | | | Table of | Detected | Contan | ninants | | |---|---------------------|-------------------|--|--------------------------|--------|-------------------------------------|--| | Contaminant Inorganic Contaminant | Violation
Yes/No | Date of
Sample | Level
Detected | Unit
Measure-
ment | MCLG | Regulatory Limit
(MCL, TT or AL) | Likely Source of Contamination | | and game Contaminant | | | | | | | | | Copper | No | 2020 | 0.965
0.20-1.1 ² | mg/L | 0 | 1.3 (AL) | Corrosion of household plumbing systems. | | Lead | No | 2020 | 0.00235 ¹
ND-0.0047 ² | ug/L | 0 | 15 (AL) | Corrosion of household plumbing systems. | | Nitrate | No | 2020 | 0.30 | mg/L | 10 | 10 (MCL) | Runoff from fertilizer use; Leaching from septic tanks, sewage; erosion of natural deposits. | | Chloride | No | 2019 | 13 | mg/L | n/a | 250 (MCL) | Naturally occurring or indicative of roa salt contamination. | | Odor | No | 2019 | 2 | TON | n/a | 3 (MCL) | Natural sources; Organic or inorganic
pollutants originating from municipal
and industrial waste discharges | | Zinc | No | 2019 | 0.50 | mg/L | n/a | 5 (MCL) | Naturally occurring; mining wastes | | Sulfate | No | 2019 | 6.6 | mg/L | n/a | 250 (MCL) | Naturally occurring | | Sodium Disinfection Byproducts | No | 2019 | 13 | mg/L | n/a | See Note 3 | Naturally occurring; Road salt; Water softeners; Animal waste. | | | | | | | | | T TO THE TOTAL T | | Haloacetic Acids
(HAA5s) | No | 2020 | 5 | ug/l | n/a | 60 (MCL) | By-product of drinking water | | Total Trihalomethanes (TTHMs) Radioactive Contaminar | No | 2020 | 13.7 | ug/L | n/a | 80 (MCL) | By-product of drinking water chlorination
needed to kill harmful organisms. TTHMs ar
formed when source water contains large
amounts or organic matter. | | Combined Radium | No I | 2016 | 0 1 | | | | The second strategy. | | 228, 226 | 140 | 2010 | 0 | pCi/L | 0 | 5 (MCL) | Erosion of natural deposits | - 1 The level presented represents the 90th percentile of the 5 sites tested. A percentile is a value on a scale of 100 that indicates the percent of a distribution that is equal to or below it. The 90th percentile is equal to or greater than 90% of the lead values detected at your water system. - 2 The level presented represents the range of the 5 samples collected. The action level for copper and lead was not exceeded at any sampling - 3 Water containing more than 20 mg/l of sodium should not be used for drinking by people on severely restricted sodium diets. Water containing more than 270 mg/l of sodium should not be used for drinking by people on moderately restricted sodium diets. #### **Definitions:** Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must Non-Detects (ND): Laboratory analysis indicates that the constituent is not present. Milligrams per liter (mg/l): Corresponds to one part of liquid in one million parts of liquid (parts per million - ppm). Micrograms per liter (ug/l): Corresponds to one part of liquid in one billion parts of liquid (parts per billion - ppb). Picocuries per liter (pCi/L): A measure of the radioactivity in water. ## What does this information mean? As you can see by the table, our system had no violations. We have learned through our testing that some contaminants have been detected; however, these contaminants were detected below the level allowed by the State. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Town of Keene is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. Is our water system meeting other rules that govern operations? Last year our system was in compliance with applicable State drinking water operating, monitoring and reporting requirements. ## Do I Need to Take Special Precautions? Some people may be more vulnerable to disease causing microorganisms or pathogens in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice from their health care provider about their drinking water. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium, Giardia and other microbial pathogens are available from the Safe Drinking Water Hotline (800-426-4791). ## Why Save Water and How to Avoid Wasting It? Although our system has an adequate amount of water to meet present and future demands, there are a number of reasons why it is important to conserve water: - Saving water saves energy and some of the costs associated with both of these necessities of life; - Saving water reduces the cost of energy required to pump water and the need to construct costly new wells, pumping systems and water towers; - Saving water lessens the strain on the water system during a dry spell or drought, helping to avoid severe water use restrictions so that essential fire fighting needs are met. You can play a role in conserving water by becoming conscious of the amount of water your household is using, and by looking for ways to use less whenever you can. It is not hard to conserve water. Conservation tips include: - Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So get a run for your money and load it to capacity. - Turn off the tap when brushing your teeth. - Check every faucet in your home for leaks. Just a slow drip can waste 15 to 20 gallons a day. Fix it up an you can save almost 6,000 gallons per year. - Check your toilets for leaks by putting a few drops of food coloring in the tank, watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from one of these otherwise invisible toilet leaks. Fix it and you save more than 30,000 gallons a year. ## Closing Thank you for allowing us to continue to provide your family with quality drinking water. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers. The costs of these improvements may be reflected in the rate structure. Rate adjustments may be necessary in order to address these improvements. We ask that all our customers help us protect our water sources, which are the heart of our community. Please call our office if you have questions.